诚信为本:市场永远在变,诚信永远不变。

摩杰登录

当前位置: 首页 > 摩杰登录

摩杰登录

发布时间:2024-07-08 14:28:30点击量:
[1] 宋锋. 基于蚁群算法-有限元的结构优化方法研究[D]. 南京: 南京航空航天大学, 2007.
Song Feng. Research on structural optimization method based on ant colony algorithm-FEM[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
[2] 郝伟. 蚁群最短路径算法优化及其在GIS中的应用研究[D]. 西安: 西北大学,2009.
Hao Wei. Shortest path algorithm of ant colony optimzation and its application in GIS reseach[D]. Xi’an: Northwestern University, 2009.
[3] 杨玉红. 城市车辆动态诱导系统关键技术研究[D]. 沈阳: 沈阳大学, 2013.
Yang Yuhong. Research on the key technology of the urban vehicle dynamic guidance system[D]. Shenyang: Shenyang University, 2013.
[4] Colorni A. Distributed optimization by ant colonies[C]. Boston: Proceedings of the First European Conference on Artificial Life, 1991.
[5] Dorigo M, Gambardella L M. Ant colony system:a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997(1):53-66.
[6] 朱庆保, 张玉兰. 基于栅格法的机器人路径规划蚁群算法[J]. 机器人, 2005, 27(2):132-136.
Zhu Qingbao, Zhang Yulan. An ant colony algorithm based on grid method for mobile robot path planning[J]. Robot, 2005, 27(2):132-136.
[7] 柳长安, 鄢小虎, 刘春阳, 等. 基于改进蚁群算法的移动机器人动态路径规划方法[J]. 电子学报, 2011, 39(5):1220-1224.
Liu Changan, Yan Xiaohu, Liu Chunyang, et al. Dynamic path planning for mobile robot based on improved ant colony optimization algorithm[J]. Acta Electronica Sinica, 2011, 39(5):1220-1224.
[8] 史恩秀, 陈敏敏, 李俊, 等. 基于蚁群算法的移动机器人全局路径规划方法研究[J]. 农业机械学报, 2014, 45(6):53-57.
Shi Enxiu, Chen Minmin, Li Jun, et al. Research on method of global path-planning for mobile robot based on ant-colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6):53-57.
[9] Fan X, Xiong L, Sheng Y, et al. Optimal path planning for mobile robots based on intensified ant colony optimization algorithm[C]. Shanghai: International Conference on Robotics,IEEE, 2003.
[10] Hsiao Y T, Chuang C L, Chien C C. Ant colony optimization for best path planning[C]. Tokoyo: IEEE International Symposium on Communications & Information Technology, 2004.
[11] Yi W, Kumar A. Ant colony optimization for disaster relief operations[J]. Transportation Research Part E:Logistics and Transportation Review, 2007, 43(6):660-672.
doi: 10.1016/j.tre.2006.05.004
[12] Attiratanasunthron N, Fakcharoenphol J. A running time analysis of an ant colony optimization algorithm for shortest paths in directed acyclic graphs[J]. Information Processing Letters, 2008, 105(3):88-92.
doi: 10.1016/j.ipl.2007.08.013
[13] Gajpal Y, Abad P L. Multi-ant colony system(MACS) for a vehicle routing problem with backhauls[J]. European Journal of Operational Research, 2009, 196(1):102-117.
doi: 10.1016/j.ejor.2008.02.025
[14] Duan P, Xiong S, Jiang H. Multi-objective optimization model based on heuristic ant colony algorithm for emergency evacuation[C]. Nanjing: International IEEE Conference on Intelligent Transportation Systems, 2012.
[15] Song F, Wang L. Application of improved ant colony optimization in intelligent transportation[J]. Mathematics in Practice and Theory, 2013, 43(3):66-72.
[16] Ma J, Tan X, Xu W. Study on VRP based on improved ant colony optimization and internet of vehicles[C]. Bismarck: Transportation Electrification Asia-pacific, 2014.
[17] Katona G, Lenart B, Juhasz J. Compare Ant-colony and Genetic algorithm for shortest path problem and introduce their parallel implementations[C]. Chicago: International Conference on Models & Technologies for Intelligent Transportation Systems, 2015.
[18] Mouhcine E, Mansouri K, Mohamed Y. An improved swarm optimization algorithm for vehicle path planning problem[C]. Cincinati: The Fourth IEEE International Colloquium on Information Science and Technology, 2016.
[19] Zuo L, Lei S, Dong S, et al. A Multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing[J]. IEEE Access, 2017, 3(1):2687-2699.
doi: 10.1109/ACCESS.2015.2508940
[20] Cheng R, Y Song, Chen D, et al. Intelligent positioning approach for high speed trains based on ant colony optimization and machine learning algorithms[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10):3737-3746.
doi: 10.1109/TITS.2018.2878442
[21] Lin C, Han G, Du J, et al. Spatiotemporal congestion-aware path planning toward intelligent transportation systems in software-defined smart city IoT[J]. IEEE Internet of Things Journal, 2020, 7(9):8012-8024.
doi: 10.1109/JIOT.2020.2994963
[22] Xiang X, Tian Y, Zhang X, et al. A pairwise proximity learning-based ant colony algorithm for dynamic vehicle routing problems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 1(2):1-12
[23] Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization[C]. Agris: Proceedings of the Second International Conference on Genetic Algorithms, 1987.
[24] Holland, John H.Genetic algorithms and the optimal allocation of trials[J]. Siam Journal on Computing, 1973, 2(2):88-105.
doi: 10.1137/0202009
[25] Parker J K, Khoogar A R, Goldberg D E. Inverse kinematics of redundant robots using genetic algorithms[C]. Frankfort: IEEE International Conference on Robotics and Automation, 1989.
[26] Juidette H, Youlal H. Fuzzy dynamic path planning using genetic algorithms[J]. Electronics Letters, 2000, 36(4):374-376.
doi: 10.1049/el:20000314
[27] Pernas F, Higuera J, Rondón F J. Route optimization for intelligent transport system using genetic algorithms[C]. Houston: Automotive and Transportation Technology Congress and Exposition, 2001.
[28] 张飞舟, 晏磊, 范跃祖, 等. 智能交通系统中的运营车辆优化调度研究[J]. 北京航空航天大学学报, 2002, 28(6):707-710.
Zhang Feizhou, Yan Lei, Fan Yuezu, et al. Optimizing dispatching of public traffic vehicles in intelligent transport system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(6):707-710.
[29] Chan W T, Tao F. Using GIS and genetic algorithm in highway alignment optimization[C]. Tianjin: Intelligent Transportation Systems, 2003.
[30] Xie S Y, Gao S, Xu B. Study of an optimum scheduling algorithm about buses in city intelligent transport systems[C]. Kansas City: International Conference on Machine Learning & Cybernetics, 2004.
[31] Garzia F, Perna C, Cusani R. UMTS network planning using genetic algorithms[C]. Rome: WIT Transactions on the Biomedicine and Health, 2005.
[32] Yu L, Gong J, Zhang J, et al. Genetic-algorithm-based path optimization methodology for spatial decision[C]. Los Angeles: Geoinformatics,Geospatial Information Science. International Society for Optics and Photonics, 2006.
[33] Mahjoubi H, Bahrami F, Lucas C. Path planning in an environment with static and dynamic obstacles using genetic algorithm:a simplified search space approach[C]. Memphis: IEEE Congress on Evolutionary Computation, 2006.
[34] Li Q, Liu G, Wei Z, et al. A specific genetic algorithm for optimum path planning in intelligent transportation system[C]. Lincoln: International Conference on Its Telecommunications, 2007.
[35] Arunadevi J, Johnsanjeevkumar A, Sujatha N. Intelligent transport route planning using parallel genetic algorithms and MPI in high performance computing cluster[C]. Miami: Proceedings of the Fifteenth International Conference on Advanced Computing and Communications, 2007.
[36] Mohamed M. Generic parallel genetic algorithms framework for optimizing intelligent transportation systems[D]. Toronto: University of Toronto, 2007.
[37] Lin C, Yu J, Liu J, et al. Genetic algorithm for shortest driving time in intelligent transportation systems[C]. Dallas: International Conference on Multimedia and Ubiquitous Engineering, 2008.
[38] Kumar A, Arunadevi J, Mohan V. Intelligent transport route planning using genetic algorithms in path computation algorithms[J]. European Journal of Scientific Research, 2009, 25(3):463-468.
[39] Zou G, Kulkani R. A systematic genetic algorithm based framework to optimize intelligent transportation system(ITS) strategies[C]. Houston: ITS America's Twenty-third Annual Meeting & Exposition, 2013.
[40] 张礼华, 廖闻剑, 彭艳兵. 求解物流路径优化的改进遗传算法研究[J]. 电子设计工程, 2016, 24(10):13-16,20.
Zhang Lihua, Liao Wenjian, Peng Yanbing. Research on improved genetic algorithm for solving optimization of logistics distribution route[J]. Electronic Design Engineering, 2016, 24(10):13-16,20.
[41] 刘艳秋, 刘博. 交通拥堵下基于实时交通信息的路径选择模型[J]. 沈阳工业大学学报, 2014, 36(4):426-430.
Liu Yanqiu, Liu Bo. Route selection model based on real-time traffic information under traffic congestion[J]. Journal of Shenyang University of Technology, 2014, 36(4):426-430.
[42] Souza A M, Yokoyama R S, Maia G, et al. Real-time path planning to prevent traffic jam through an intelligent transportation system[C]. Honolulu: International Conference on Computers & Communication,IEEE, 2016.
[43] Han Z, Wang D, Feng L, et al. Multi-AGV path planning with double-path constraints by using an improved genetic algorithm[J]. Plos One, 2017, 12(7):1747-1765.
[44] Yang S, Ou J, Feng Y, et al. Freeway travel time estimation based on the general motors model: a genetic algorithm calibration framework[J]. IET Intelligent Transport Systems, 2019, 13(7):1154-1163.
doi: 10.1049/iet-its.2018.5540
[45] Zha Z, Li C, Xiao J, et al. An improved adaptive clone genetic algorithm for task allocation optimization in ITWSNs[J]. Journal of Sensors, 2021, 2(4):1-12.

平台注册入口